On discretization of tori of compact simple Lie groups

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2009 J. Phys. A: Math. Theor. 42385208
(http://iopscience.iop.org/1751-8121/42/38/385208)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.155
The article was downloaded on 03/06/2010 at 08:09

Please note that terms and conditions apply.

On discretization of tori of compact simple Lie groups

Jiří Hrivnák ${ }^{1,2}$ and Jiří Patera ${ }^{1}$
${ }^{1}$ Centre de recherches mathématiques, Université de Montréal, CP 6128-Centre ville, Montréal, H3C 3J7, Québec, Canada
${ }^{2}$ Department of Physics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Břehová 7, 11519 Prague 1, Czech Republic
E-mail: patera@crm.umontreal.ca and jiri.hrivnak@fjfi.cvut.cz

Received 25 March 2009
Published 7 September 2009
Online at stacks.iop.org/JPhysA/42/385208

Abstract

Three types of numerical data are provided for simple Lie groups of any type and rank. These data are indispensable for Fourier-like expansions of multidimensional digital data into finite series of C - or S-functions on the fundamental domain F of the underlying Lie group G. Firstly, we determine the number $\left|F_{M}\right|$ of points in F from the lattice P_{M}^{\vee}, which is the refinement of the dual weight lattice P^{\vee} of G by a positive integer M. Secondly, we find the lowest set Λ_{M} of dominant weights, specifying the maximal set of C - and S functions that are pairwise orthogonal on the point set F_{M}. Finally, we describe an efficient algorithm for finding, on the maximal torus of G, the number of conjugate points to every point of F_{M}. Discrete C - and S-transforms, together with their continuous interpolations, are presented in full generality.

PACS numbers: $02.20 .-\mathrm{a}, 02.30 . \mathrm{Gp}, 02.30 . \mathrm{Nw}, 02.60 . \mathrm{Ed}$

1. Introduction

Processing of multidimensional digital data is the general motivation for this paper. However, our immediate objective is much more specific: recently introduced new Fourier-like transforms, called C-, S - and E-transforms [1], or simply orbit function transforms, on lattices of any dimension, symmetry and density, reviewed in [2-4] (see also references therein), require certain technical data to be truly versatile and useful tools in all cases. Providing such data in full generality is the main goal of this paper. For the lowest dimension, $n=2$ and 3 , it was possible to obtain the data by simpler means, although even then it presented a challenge of sorts [5-9].

The theoretical background of this paper is the amazing uniformity, as to the type and rank, of the theory of simple Lie algebras over the complex number field [10-12] and related finite Weyl groups [13, 14], also referred to as crystallographic Coxeter groups. Discretization
problems frequently call for the properties of the maximal torus of the underlying compact simple Lie group [15].

Data provided in the paper can be used in many investigations. The focus is on three types of transforms defined on a well-known finite region F of a real Euclidean space of dimension n, where n is the rank of the underlying simple Lie group G. The region for digital data is the lattice fragment F_{M}, which is the intersection of F with the dual weight lattice of G, refined by the factor $1 / M$. Positive integer M fixes the density of points in F_{M}. The symmetry of the dual weight lattice is dictated by our choice of G. Digital data are functions sampled on F_{M}. They may be of wildly varying densities. Therefore, the flexibility in the choice of M is crucial in our set-up.

The results in this paper provide all the information that is needed for three types of expansions of functions, given on the fundamental region F of any compact simple Lie group/Lie algebra. The fundamental region is an n-dimensional simplex given explicitly by its $n+1$ vertices. When the Lie group/Lie algebra is semisimple but not simple, the data needed are a straightforward concatenation of those needed for simple cases. In particular, the fundamental region is the Cartesian product of simplexes of simple constituents of the Lie group/Lie algebra.

Firstly, we consider the expansion into series of either C - or S-functions, analog of the expansions into Fourier series in n variables. Unlike the familiar case, our variables do not refer necessarily to an orthogonal basis in \mathbb{R}^{n}. That is just one of the cases when the underlying Lie algebra is the product $A_{1} \times A_{1} \times \cdots \times A_{1}$ of n copies of A_{1}. Here the variables are defined relative to a basis which reflects the symmetries of the weight lattice of the Lie algebra. Hence, in all but one case, the basis is non-orthogonal.

Secondly, we consider the expansion of functions sampled on a lattice grid $F_{M} \subset F$ with density controlled by $M \in \mathbb{N}$. Such expansions are necessarily finite because the number of points $\left|F_{M}\right|$ is finite. The numbers $\left|F_{M}\right|$ are determined here for all simple Lie algebras and for all M.

Our third case examines the continuous interpolations of functions sampled on F_{M}. Once the corresponding finite series is found, it suffices to replace the lattice variables in the expansion functions by the continuous variables. Such a simple idea applies equally well to any dimension, to lattices of any symmetry and to grids in F of any density. The interpolation is performed in the 'Fourier space' rather than in the space of the data, where the best of the common interpolation techniques are usually applied. At present there is some empirical evidence that the quality of our interpolation method compares favorably with the best methods used in 2 D , while being as fast as the simplest of the standard interpolations in 2D, namely the linear interpolation. In dimensions exceeding 2 , there is hardly any competition to the possibilities brought forth here.

The technical data provided in this paper in full generality are as follows. First we provide the formula for the volume $\operatorname{vol}(F)$ of the fundamental region of G, which is closely related to the order of the Weyl group W of G.

A new result presented in this paper is the number $\left|F_{M}\right|$ of lattice points in the fragment F_{M} for all $1 \leqslant M<\infty$ and for all simple Lie groups G. The number $\left|F_{M}\right|$ is used in the discrete orthogonality relation of the orbit functions when those are sampled at the points of F_{M}.

The second result presented in this paper is the determination of the sets Λ_{M} of C - and S-functions which are pairwise orthogonal on the point sets F_{M}. Such a set consists of points of the weight lattice P of G. In fact there is an unlimited number of such sets in P. Our aim is to describe the unique lowest set.

The third result presented in this paper is a method for finding a number indispensable to the definition of the inner product of functions sampled on the points of F_{M}. The number is equal to the number of elements in a conjugacy class of elements of finite order on the maximal torus of a simple Lie group. That number, and also an implicit method for determining it, has already been found in [16]. The present prescription is explicit and easy to use in all cases.

In order to determine the numbers $\left|F_{M}\right|$ and the sets Λ_{M}, we must review the orthogonality properties of orbit functions in a somewhat wider context than in [16, 17].

Reasons for which the results presented should be of interest, beyond our own motivations, are as follows.

The volume of F for each G is needed when the continuous orthogonality of orbit functions is used. Its relation to the order of the Weyl group is of independent interest.

The points of F_{M} are obtained in terms of barycentric coordinates [$s_{0}, s_{1}, \ldots, s_{n}$] satisfying a certain sum rule (19). The subset of F_{M}, subject to the additional requirement that $\operatorname{gcd}\left\{s_{0}, s_{1}, \ldots, s_{n}\right\}=1$, consists of the representatives of the conjugacy classes of elements of adjoint order M in the corresponding compact simple Lie group. Counting such conjugacy classes in certain Lie groups was the subject of the papers [18-20].

The sets Λ_{M} and F_{M} are in one-to-one correspondence. Most of the properties of elements of F_{M} are therefore reflected in the corresponding elements of Λ_{M}.

The method used here to determine the number of conjugate points to every point of F_{M} that can be extracted from much more elaborate techniques exploited in [21] for describing the faces of all dimensions of the proximity (Voronoi) cells of the root lattices of G.

The pertinent standard properties of simple Lie algebras are recalled in section 2. A general formula for the volume of F is given there. In section 3 the lattice grids F_{M} and the set Λ_{M} are described and the number of their points is found. Section 4 contains a description of the C - and S-functions and their properties pertinent for our goals. In view of the preceding results, section 5 is devoted to the detailed description of the discrete orthogonality of C and S-functions. The distinction between the two is brought out. Comments and interesting follow-up questions are in the last section.

2. Pertinent properties of Lie groups and Lie algebras

2.1. Definitions and notations

Consider the Lie algebra of the compact simple Lie group G of rank n, with the set of simple roots $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$, spanning the Euclidean space \mathbb{R}^{n}.

By uniform and standard methods for G of any type and rank, one determines from Δ a number of related quantities and virtually all the properties of G. We make use of the following ones.

- The highest root $\xi \equiv-\alpha_{0}=m_{1} \alpha_{1}+\cdots+m_{n} \alpha_{n}$. Here the coefficients m_{j} are known positive integers also called the marks of G.
- The Coxeter number $m=1+m_{1}+\cdots+m_{n}$ of G.
- The Cartan matrix C

$$
C_{i j}=\frac{2\left\langle\alpha_{i}, \alpha_{j}\right\rangle}{\left\langle\alpha_{j}, \alpha_{j}\right\rangle}, \quad i, j \in\{1, \ldots, n\}
$$

- The order c of the center of G :

$$
\begin{equation*}
c=\operatorname{det} C . \tag{1}
\end{equation*}
$$

$C_{n}, n \geq 2$

$D_{n}, n \geq 4$

$C_{n}, n \geq 2$

E_{7}

E_{6}

Figure 1. The extended Coxeter-Dynkin diagrams of simple Lie algebras and their numbering. The extension root carries number 0 .

- The root lattice Q of G :

$$
\begin{equation*}
Q=\left\{\alpha \in \mathbb{R}^{n} \mid\left\langle\alpha, \omega^{\vee}\right\rangle \in \mathbb{Z}, \forall \omega^{\vee} \in P^{\vee}\right\}=\mathbb{Z} \alpha_{1}+\cdots+\mathbb{Z} \alpha_{n} \tag{2}
\end{equation*}
$$

- The \mathbb{Z}-dual lattice to Q :

$$
P^{\vee}=\left\{\omega^{\vee} \in \mathbb{R}^{n} \mid\left\langle\omega^{\vee}, \alpha\right\rangle \in \mathbb{Z}, \forall \alpha \in \Delta\right\}=\mathbb{Z} \omega_{1}^{\vee}+\cdots+\mathbb{Z} \omega_{n}^{\vee}
$$

- The dual root lattice

$$
Q^{\vee}=\mathbb{Z} \alpha_{1}^{\vee}+\cdots+\mathbb{Z} \alpha_{n}^{\vee}, \quad \text { where } \quad \alpha_{i}^{\vee}=\frac{2 \alpha_{i}}{\left\langle\alpha_{i}, \alpha_{i}\right\rangle}
$$

- The extended Coxeter-Dynkin diagram (DD) of G-this diagram describes the system of the simple roots Δ together with the highest root $\xi=-\alpha_{0}$. The k th node corresponds to the vector $\alpha_{k}, k=0, \ldots, n$. Direct links between two nodes indicate the absence of orthogonality between the pair of the corresponding vectors. Single, double and triple vertices imply that relative angles between these vectors are $2 \pi / 3,3 \pi / 4,5 \pi / 6$, respectively. Quadruple vertex, which appears for the case A_{1} only, denotes the fact that the highest root and the simple root coincide. Colors of the nodes indicate relative length of α_{k}. For the cases B_{n}, C_{n} and F_{4} the squared length of the black node (short root) is half of the squared length of the white node (long root). For G_{2}, the squared length of the black node is one third of the squared length of the white node. We also use the standard additional convention for the squared lengths of the white nodes α :

$$
\langle\alpha, \alpha\rangle=2
$$

The original (non-extended) Coxeter-Dynkin diagram of G can be recovered from extended DD by omitting the extension 0 -node and adjacent edges.

The extended DDs of all simple Lie algebras are shown in figure 1.

2.2. Weyl group and affine Weyl group

The properties of Weyl groups and affine Weyl groups can be found for example in [13, 14]. The finite Weyl group W is generated by n reflections $r_{\alpha}, \alpha \in \Delta$, in ($n-1$)-dimensional 'mirrors' orthogonal to simple roots intersecting at the origin:

$$
r_{\alpha_{i}} a \equiv r_{i} a=a-\frac{2\left\langle a, \alpha_{i}\right\rangle}{\left\langle\alpha_{i}, \alpha_{i}\right\rangle} \alpha_{i}, \quad a \in \mathbb{R}^{n}
$$

The infinite affine Weyl group $W^{\text {aff }}$ is generated by translations by elements of Q^{\vee} and by W. More precisely, $W^{\text {aff }}$ is the semidirect product of the Abelian group of translations Q^{\vee} and of the Weyl group W :

$$
\begin{equation*}
W^{\mathrm{aff}}=Q^{\vee} \rtimes W \tag{3}
\end{equation*}
$$

Equivalently, $W^{\text {aff }}$ is generated by the reflections r_{i} and reflection r_{0}, where

$$
r_{0} a=r_{\xi} a+\frac{2 \xi}{\langle\xi, \xi\rangle}, \quad r_{\xi} a=a-\frac{2\langle a, \xi\rangle}{\langle\xi, \xi\rangle} \xi, \quad a \in \mathbb{R}^{n}
$$

The fundamental region F of $W^{\text {aff }}$ is the convex hull of the points $\left\{0, \frac{\omega_{1}^{\vee}}{m_{1}}, \ldots, \frac{\omega_{n}^{\vee}}{m_{n}}\right\}$:

$$
\begin{align*}
F & =\left\{y_{1} \omega_{1}^{\vee}+\cdots+y_{n} \omega_{n}^{\vee} \mid y_{0}, \ldots, y_{n} \in \mathbb{R}^{\geqslant 0}, y_{0}+y_{1} m_{1}+\cdots+y_{n} m_{n}=1\right\} \\
& =\left\{a \in \mathbb{R}^{n} \mid\langle a, \alpha\rangle \geqslant 0, \forall \alpha \in \Delta,\langle a, \xi\rangle \leqslant 1\right\} \tag{4}
\end{align*}
$$

and

$$
W^{\mathrm{aff}} F=\mathbb{R}^{n}
$$

Since F is a fundamental region of $W^{\text {aff }}$, we have the following.
(i) For any $a \in \mathbb{R}^{n}$ there exist $a^{\prime} \in F, w \in W$ and $q^{\vee} \in Q^{\vee}$ such that

$$
\begin{equation*}
a=w a^{\prime}+q^{\vee} \tag{5}
\end{equation*}
$$

(ii) If $a, a^{\prime} \in F$ and $a^{\prime}=w^{\text {aff }} a$, $w^{\text {aff }} \in W^{\text {aff }}$, then $a=a^{\prime}$, i.e. if there exist $w \in W$ and $q^{\vee} \in Q^{\vee}$ such that $a^{\prime}=w a+q^{\vee}$, then

$$
\begin{equation*}
a^{\prime}=a=w a+q^{\vee} . \tag{6}
\end{equation*}
$$

(iii) Consider a point $a=y_{1} \omega_{1}^{\vee}+\cdots+y_{n} \omega_{n}^{\vee} \in F$, such that $y_{0}+y_{1} m_{1}+\cdots+y_{n} m_{n}=1$. The isotropy group

$$
\begin{equation*}
\operatorname{Stab}_{W_{\text {aff }}}(a)=\left\{w^{\text {aff }} \in W^{\text {aff }} \mid w^{\text {aff }} a=a\right\} \tag{7}
\end{equation*}
$$

of the point a is trivial, $\operatorname{Stab}_{W_{\text {aff }}}(a)=1$, if $a \in \operatorname{int}(F)$, where $\operatorname{int}(F)$ denotes the interior of F, i.e. all $y_{i}>0, i=0, \ldots, n$. Otherwise the group $\operatorname{Stab}_{W_{\text {aff }}(a) \text { is generated by such } r_{i}}$ for which $y_{i}=0, i=0, \ldots, n$. The Coxeter-Dynkin diagram of $\operatorname{Stab}_{W^{\text {aff }}}(a)$ is obtained as a subgraph of the extended DD by omitting such vertices α_{i} (and adjacent edges) for which $y_{i}>0, i=0, \ldots, n$. Since there always exists some $y_{i}>0, i=0, \ldots, n$, this subgraph is always proper.

2.3. Volume of F

The volumes of fundamental domains $\operatorname{vol}(F)$ often appear in an implicit form in the literature and are commonly used for the calculation of the order of the Weyl group [10, 13]. For applications, it may be also useful to calculate explicit values of these volumes which we
summarize in table 2. Taking into account the standard convention for the lengths of the root vectors, one can use for the calculation of $\operatorname{vol}(F)$ the following formula.

Proposition 2.1. The volume $\operatorname{vol}(F)$ of the fundamental domain $F \subset \mathbb{R}^{n}$ is equal to

$$
\operatorname{vol}(F)=\frac{1}{n!} \frac{1}{m_{1} \cdots m_{n}} \sqrt{\frac{2}{\left\langle\alpha_{1}, \alpha_{1}\right\rangle} \cdots \frac{2}{\left\langle\alpha_{n}, \alpha_{n}\right\rangle}} c^{-\frac{1}{2}}
$$

Proof. Suppose we have standard orthonormal basis χ of \mathbb{R}^{n}. The map which transforms standard n-simplex into F is determined by the matrix ω_{m}^{\vee} given by the coordinates of the vectors $\omega_{i}^{\vee} / m_{i}, i \in\{1, \ldots, n\}$, in the basis χ. Since the volume of the standard n-simplex is $1 / n$!, we have

$$
\operatorname{vol}(F)=\frac{1}{n!}\left|\operatorname{det} \omega_{m}^{\vee}\right|
$$

Let $\omega^{\vee}, \alpha^{\vee}$ denote the matrices given by the coordinates (in columns) of the vectors ω_{i}^{\vee} and α_{i}^{\vee}, respectively and let $G\left(\alpha_{1}^{\vee}, \ldots, \alpha_{n}^{\vee}\right)$ denote the Gram matrix of the basis $\alpha_{1}^{\vee}, \ldots, \alpha_{n}^{\vee}$, i.e. $G\left(\alpha_{1}^{\vee}, \ldots \alpha_{n}^{\vee}\right)_{i j}=\left\langle\alpha_{i}^{\vee}, \alpha_{j}^{\vee}\right\rangle$. Then $\left(\alpha^{\vee}\right)^{T} \alpha^{\vee}=G\left(\alpha_{1}^{\vee}, \ldots, \alpha_{n}^{\vee}\right)$ and $c \operatorname{det} \omega^{\vee}=\operatorname{det} \alpha^{\vee}$. Clearly, the relation

$$
\operatorname{det} G\left(\alpha_{1}^{\vee}, \ldots, \alpha_{n}^{\vee}\right)=\frac{2}{\left\langle\alpha_{1}, \alpha_{1}\right\rangle} \cdots \frac{2}{\left\langle\alpha_{n}, \alpha_{n}\right\rangle} c
$$

also holds. We now have

$$
\begin{aligned}
\left|\operatorname{det} \omega_{m}^{\vee}\right| & =\frac{1}{m_{1} \cdots m_{n}}\left|\operatorname{det} \omega^{\vee}\right|=\frac{1}{m_{1} \cdots m_{n}} c^{-1}\left|\operatorname{det} \alpha^{\vee}\right| \\
& =\frac{1}{m_{1} \cdots m_{n}} c^{-1} \sqrt{\operatorname{det} G\left(\alpha_{1}^{\vee}, \ldots, \alpha_{n}^{\vee}\right)}
\end{aligned}
$$

2.4. Action of W on the maximal torus $\mathbb{R}^{n} / Q^{\vee}$

If we have two elements $a, a^{\prime} \in \mathbb{R}^{n}$ such that $a^{\prime}-a=q^{\vee}$, with $q^{\vee} \in Q^{\vee}$, then for $w \in W$ we have $w a-w a^{\prime}=w q^{\vee} \in Q^{\vee}$, i.e. we have a natural action of W on the torus $\mathbb{R}^{n} / Q^{\vee}$. For $x \in \mathbb{R}^{n} / Q^{\vee}$ we denote the isotropy group

$$
\operatorname{Stab}(x)=\{w \in W \mid w x=x\}
$$

and its order by $h_{x} \equiv|\operatorname{Stab}(x)|$. We denote the orbit

$$
W x=\left\{w x \in \mathbb{R}^{n} / Q^{\vee} \mid w \in W\right\}
$$

and its order by $\varepsilon(x) \equiv|W x|$. Clearly we have

$$
\begin{equation*}
\varepsilon(x)=\frac{|W|}{h_{x}} \tag{8}
\end{equation*}
$$

Proposition 2.2.

(i) For any $x \in \mathbb{R}^{n} / Q^{\vee}$ there exist $x^{\prime} \in F \cap \mathbb{R}^{n} / Q^{\vee}$ and $w \in W$ such that

$$
\begin{equation*}
x=w x^{\prime} . \tag{9}
\end{equation*}
$$

(ii) If $x, x^{\prime} \in F \cap \mathbb{R}^{n} / Q^{\vee}$ and $x^{\prime}=w x, w \in W$, then

$$
\begin{equation*}
x^{\prime}=x=w x . \tag{10}
\end{equation*}
$$

(iii) If $x \in F \cap \mathbb{R}^{n} / Q^{\vee}$, i.e. $x=a+Q^{\vee}, a \in F$, then

$$
\begin{equation*}
\operatorname{Stab}(x) \cong \operatorname{Stab}_{W_{\text {aff }}}(a) \tag{11}
\end{equation*}
$$

Table 1. The marks and the dual marks of simple Lie algebras. Numbering of simple roots as shown in figure 1 is used.

Type	Marks m_{1}, \ldots, m_{n}	Dual marks $m_{1}^{\vee}, \ldots, m_{n}^{\vee}$
$A_{n}(n \geqslant 1)$	$1,1, \ldots, 1$	$1,1, \ldots, 1$
$B_{n}(n \geqslant 3)$	$1,2,2, \ldots, 2$	$2,2, \ldots, 2,1$
$C_{n}(n \geqslant 2)$	$2,2, \ldots, 2,1$	$1,2,2, \ldots, 2$
$D_{n}(n \geqslant 4)$	$1,2, \ldots, 2,1,1$	$1,2, \ldots, 2,1,1$
E_{6}	$1,2,3,2,1,2$	$1,2,3,2,1,2$
E_{7}	$2,3,4,3,2,1,2$	$2,3,4,3,2,1,2$
E_{8}	$2,3,4,5,6,4,2,3$	$2,3,4,5,6,4,2,3$
G_{2}	2,3	3,2
F_{4}	$2,3,4,2$	$2,4,3,2$

Proof.

(i) Follows directly from (5).
(ii) Follows directly from (6).
(iii) We have from (3) that for any $w^{\text {aff }} \in W^{\text {aff }}$ there exist unique $w \in W$ and unique $\operatorname{shift} T\left(q^{\vee}\right)$ such that $w^{\text {aff }}=T\left(q^{\vee}\right) w$. Define the map $\psi: \operatorname{Stab}_{W \text { aff }}(a) \rightarrow W$ for $w^{\text {aff }} \in \operatorname{Stab}_{W^{\text {aff }}}(a)$ by

$$
\psi\left(w^{\mathrm{aff}}\right)=\psi\left(T\left(q^{\vee}\right) w\right)=w .
$$

Since the relation

$$
\psi\left(T\left(q_{1}^{\vee}\right) w_{1} T\left(q_{2}^{\vee}\right) w_{2}\right)=\psi\left(T\left(q_{1}^{\vee}+w_{1} q_{2}^{\vee}\right) w_{1} w_{2}\right)=w_{1} w_{2}
$$

holds, ψ is indeed a homomorphism. If $a=w^{\text {aff }} a=w a+q^{\vee}$, then $a-w a=q^{\vee} \in Q^{\vee}$, i.e. we obtain $w \in \operatorname{Stab}(x)$ and vice versa. Thus, $\psi\left(\operatorname{Stab}_{W^{\text {aff }}}(a)\right)=\operatorname{Stab}(x)$ holds. We also have

$$
\operatorname{ker} \psi=\left\{T\left(q^{\vee}\right) \in \operatorname{Stab}_{W^{\text {aff }}}(a)\right\}=1
$$

2.5. Dual Lie algebra

The set of simple dual roots $\Delta^{\vee}=\left\{\alpha_{1}^{\vee}, \ldots, \alpha_{n}^{\vee}\right\}$ is a system of simple roots of some simple Lie algebra. The system Δ^{\vee} also spans the Euclidean space \mathbb{R}^{n}.

The dual system Δ^{\vee} determines the following.

- The highest dual root $\eta \equiv-\alpha_{0}^{\vee}=m_{1}^{\vee} \alpha_{1}^{\vee}+\cdots+m_{n}^{\vee} \alpha_{n}^{\vee}$. Here the coefficients m_{j}^{\vee} are called the dual marks of G. The marks and the dual marks are summarized in table 1 .
- The dual Cartan matrix

$$
C_{i j}^{\vee}=\frac{2\left|\alpha_{i}^{\vee}, \alpha_{j}^{\vee}\right\rangle}{\left\langle\alpha_{j}^{\vee}, \alpha_{j}^{\vee}\right\rangle}=C_{j i}, \quad i, j \in\{1, \ldots, n\} .
$$

- The dual root lattice

$$
Q^{\vee}=\mathbb{Z} \alpha_{1}^{\vee}+\cdots+\mathbb{Z} \alpha_{n}^{\vee}
$$

- The root lattice

$$
Q=\mathbb{Z} \alpha_{1}+\cdots+\mathbb{Z} \alpha_{n}, \quad \text { where } \quad \alpha_{i}=\frac{2 \alpha_{i}^{\vee}}{\left\langle\alpha_{i}^{\vee}, \alpha_{i}^{\vee}\right\rangle}
$$

- The \mathbb{Z}-dual lattice

$$
P=\left\{\omega \in \mathbb{R}^{n} \mid\left\langle\omega, \alpha^{\vee}\right\rangle \in \mathbb{Z}, \forall \alpha^{\vee} \in \Delta^{\vee}\right\}=\mathbb{Z} \omega_{1}+\cdots+\mathbb{Z} \omega_{n} .
$$

- The extended dual Coxeter-Dynkin diagram $\left(\mathrm{DD}^{\vee}\right)$ of G describes the system of dual roots Δ^{\vee} together with the highest dual root $\eta=-\alpha_{0}^{\vee}$. The k th node corresponds to the vector $\alpha_{k}^{\vee}, k=0, \ldots, n$. The rules related to relative angles and lengths of vectors are the same as for extended diagrams. Note that the squared lengths of the white nodes (long dual roots) α^{\vee} are determined by the formula

$$
\left\langle\alpha^{\vee}, \alpha^{\vee}\right\rangle=\frac{4}{\langle\alpha, \alpha\rangle},
$$

and in general $\left\langle\alpha^{\vee}, \alpha^{\vee}\right\rangle \neq 2$. For the extended DD^{\vee} the following cases may occur.
(i) For the algebras $A_{n}, D_{n}, E_{6}, E_{7}$ and E_{8} extended DD^{\vee} coincide with the corresponding extended DD shown in figure 1 .
(ii) Extended DD^{\vee} of $B_{n}, n \geqslant 3$, is the extended DD of C_{n} and vice versa.
(iii) Extended DD^{\vee} of C_{2} with unchanged numbering of the nodes.

(iv) Extended DD^{\vee} of G_{2} with unchanged numbering of the nodes.

(v) Extended DD^{\vee} of F_{4} with unchanged numbering of the nodes.

2.6. Dual affine Weyl group

The group generated by reflections with respect to dual roots $r_{\alpha^{\vee}}=r_{\alpha}, \alpha^{\vee} \in \Delta^{\vee}$, coincides with the Weyl group W. The dual affine Weyl group $\widehat{W}^{\text {aff }}$ is generated by shifts from Q and the Weyl group W. Moreover, $\widehat{W}^{\text {aff }}$ is a semidirect product of group of shifts Q and the Weyl group W :

$$
\begin{equation*}
\widehat{W}^{\mathrm{aff}}=Q \rtimes W \tag{12}
\end{equation*}
$$

Equivalently, $\widehat{W}^{\text {aff }}$ is generated by the reflections r_{i} and reflection r_{0}^{\vee}, where

$$
r_{0}^{\vee} a=r_{\eta} a+\frac{2 \eta}{\langle\eta, \eta\rangle}, \quad r_{\eta} a=a-\frac{2\langle a, \eta\rangle}{\langle\eta, \eta\rangle} \eta, \quad a \in \mathbb{R}^{n}
$$

The fundamental region F^{\vee} of $\widehat{W^{\text {aff }}}$ is the convex hull of the vertices $\left\{0, \frac{\omega_{1}}{m_{1}^{\vee}}, \ldots, \frac{\omega_{n}}{m_{n}^{\vee}}\right\}$:

$$
\begin{align*}
F^{\vee} & =\left\{z_{1} \omega_{1}+\cdots+z_{n} \omega_{n} \mid z_{0}, \ldots, z_{n} \in \mathbb{R}^{\geqslant 0}, z_{0}+z_{1} m_{1}^{\vee}+\cdots+z_{n} m_{n}^{\vee}=1\right\} \\
& =\left\{a \in \mathbb{R}^{n} \mid\left\langle a, \alpha^{\vee}\right\rangle \geqslant 0, \forall \alpha^{\vee} \in \Delta^{\vee},\langle a, \eta\rangle \leqslant 1\right\} \tag{13}
\end{align*}
$$

and

$$
\widehat{W}^{\text {aff }} F^{\vee}=\mathbb{R}^{n}
$$

Since F^{\vee} is a fundamental region, we have the following.
(i) For any $a \in \mathbb{R}^{n}$ there exist $a^{\prime} \in F^{\vee}, w \in W$ and $q \in Q$ such that

$$
\begin{equation*}
a=w a^{\prime}+q \tag{14}
\end{equation*}
$$

(ii) If $a, a^{\prime} \in F^{\vee}$ and $a^{\prime}=w^{\text {aff }} a, w^{\text {aff }} \in \widehat{W}^{\text {aff }}$, then $a=a^{\prime}$, i.e. if there exist $w \in W$ and $q \in Q$ such that $a^{\prime}=w a+q$, then

$$
\begin{equation*}
a^{\prime}=a=w a+q \tag{15}
\end{equation*}
$$

(iii) Consider the point $a=z_{1} \omega_{1}+\cdots+z_{n} \omega_{n} \in F^{\vee}$ such that $z_{0}+z_{1} m_{1}^{\vee}+\cdots+z_{n} m_{n}^{\vee}=1$. The isotropy group

$$
\begin{equation*}
\operatorname{Stab}_{\widehat{W} \text { aff }}(a)=\left\{w^{\text {aff }} \in \widehat{W}^{\text {aff }} \mid w^{\text {aff }} a=a\right\} \tag{16}
\end{equation*}
$$

of the point a is trivial, $\operatorname{Stab}_{\widehat{W}}$ aff $(a)=1$, if $a \in \operatorname{int}\left(F^{\vee}\right)$, i.e. all $z_{i}>0, i=0, \ldots, n$. Otherwise the group $\operatorname{Stab}_{\widehat{W}}$ aff (a) is generated by such r_{i}^{\vee} for which $z_{i}=0, i=0, \ldots, n$. The Coxeter-Dynkin diagram of $\operatorname{Stab}_{\widehat{W}}$ aff (a) is obtained as a subgraph of extended DD^{\vee} by omitting such vertices α_{i}^{\vee} (and adjacent edges) for which $z_{i}>0, i=0, \ldots, n$. Since there always exists some $z_{i}>0, i=0, \ldots, n$, this subgraph is always proper.

3. Grids \boldsymbol{F}_{M} and Λ_{M}

3.1. Grid F_{M}

The grid F_{M} is the finite fragment of the lattice $\frac{1}{M} P^{\vee}$ which is found inside of F. Suppose we have fixed $M \in \mathbb{N}$ and consider the W-invariant group $\frac{1}{M} P^{\vee} / Q^{\vee}$ of the finite order:

$$
\begin{equation*}
\left|\frac{1}{M} P^{\vee} / Q^{\vee}\right|=c M^{n} \tag{17}
\end{equation*}
$$

We define the grid F_{M} as such cosets from $\frac{1}{M} P^{\vee} / Q^{\vee}$ which have representative elements in the fundamental domain F :

$$
F_{M} \equiv \frac{1}{M} P^{\vee} / Q^{\vee} \cap F
$$

From relation (9) we have that

$$
\begin{equation*}
W F_{M}=\frac{1}{M} P^{\vee} / Q^{\vee} \tag{18}
\end{equation*}
$$

We have immediately from (4) that the set F_{M}, or more precisely its representative points, can be identified as
$F_{M}=\left\{\left.\frac{s_{1}}{M} \omega_{1}^{\vee}+\cdots+\frac{s_{n}}{M} \omega_{n}^{\vee} \right\rvert\, s_{0}, s_{1}, \ldots, s_{n} \in \mathbb{Z} \geqslant 0, s_{0}+s_{1} m_{1}+\cdots+s_{n} m_{n}=M\right\}$.
Another interpretation of the points of F_{M} is as points representing the conjugacy classes of a finite Abelian subgroup of the maximal torus which is generated by the elements of order M of the torus. The order of that group can be determined after the number of elements of F_{M} is found in the next subsection.

3.2. Number of elements of F_{M}

The number of elements of F_{M} could be obtained by putting together the results of Djoković $[18,19]$, namely the numbers corresponding of all divisors of M. We proceed in another way by determining the number directly.

Proposition 3.1. Let $K, l \in \mathbb{Z} \geqslant 0$. Then the number of solutions of the equation

$$
\begin{equation*}
a_{0}+a_{1}+\cdots+a_{l}=K, \quad a_{0}, \ldots, a_{l} \in \mathbb{Z} \geqslant 0 \tag{20}
\end{equation*}
$$

is equal to $\binom{l+K}{l}$.
Proof. We proceed by induction on l. If $l=0$, then the equation $a_{0}=K$ has exactly one solution. We arrange the solutions of (20) into $K+1$ disjoint subsets according the value of
$a_{l}=0, \ldots, K$. According to the assumption, the number of solutions in each of these subsets is equal to $\binom{l-1+K-a_{l}}{l-1}$. Then we have

$$
\sum_{a_{l}=0}^{K}\binom{l-1+K-a_{l}}{l-1}=\sum_{k=0}^{K}\binom{l-1+k}{l-1}=\binom{l+K}{l}
$$

Proposition 3.2. Let $n, m_{1}, \ldots, m_{n}, M \in \mathbb{N}$, denote $L=\operatorname{lcm}\left(m_{1}, \ldots, m_{n}\right)$ and suppose
$M=L k+l, \quad k, l \in \mathbb{Z}^{\geqslant 0}, \quad l<L$,
$(n+1) L-\left(1+m_{1}+\cdots+m_{n}\right)=L N+N^{\prime}, \quad N, N^{\prime} \in \mathbb{Z}^{\geqslant 0}, \quad N^{\prime}<L$.
Then the number of solutions of the equation

$$
\begin{equation*}
a_{0}+m_{1} a_{1}+\cdots+m_{n} a_{n}=M, \quad a_{0}, \ldots, a_{n} \in \mathbb{Z}^{\geqslant 0} \tag{21}
\end{equation*}
$$

is equal to $\sum_{i=0}^{N} d_{l i}\binom{n-i+k}{n}$, where $d_{l i}$ is the number of solutions of the equation

$$
\begin{align*}
& l_{0}+m_{1} l_{1}+\cdots+m_{n} l_{n}=L i+l, \quad l_{0} \in\{0, \ldots, L-1\}, \\
& l_{1} \in\left\{0, \ldots, \frac{L}{m_{1}}-1\right\}, \ldots, l_{n} \in\left\{0, \ldots, \frac{L}{m_{n}}-1\right\} \tag{22}
\end{align*}
$$

Proof. Suppose we have fixed $M=L k+l, k, l \in \mathbb{Z} \geqslant 0, l<L$, and denote by $\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ a solution of (21). Consider the mapping

$$
\left[a_{0}, a_{1}, \ldots, a_{n}\right] \mapsto\left[\left[l_{0}, l_{1}, \ldots, l_{n}\right],\left[k_{0}, k_{1}, \ldots, k_{n}\right]\right]
$$

via the relations

$$
\begin{array}{lll}
a_{0}=L k_{0}+l_{0}, & k_{0}, l_{0} \in \mathbb{Z}^{\geqslant 0}, & l_{0}<L \\
a_{1}=\frac{L}{m_{1}} k_{1}+l_{1}, & k_{1}, l_{1} \in \mathbb{Z} \geqslant 0, & l_{1}<\frac{L}{m_{1}} \tag{23}\\
\vdots & & \\
a_{n}=\frac{L}{m_{n}} k_{n}+l_{n}, & k_{n}, l_{n} \in \mathbb{Z} \geqslant 0, & l_{n}<\frac{L}{m_{n}} .
\end{array}
$$

Substituting (23) into (21) we obtain that $\left[l_{0}, l_{1}, \ldots, l_{n}\right]$ is a solution of (22) for some $i \in\{0,1, \ldots, N\}$ such that

$$
\begin{equation*}
k_{0}+k_{1}+\cdots+k_{n}=k-i \tag{24}
\end{equation*}
$$

Conversely, for fixed $i \in\{0,1, \ldots, N\}$, each solution $\left[k_{0}, k_{1}, \ldots, k_{n}\right]$ of (24) together with a solution of (22) leads to some solution of (21), i.e. we have a decomposition of the solutions of (21) into disjoint subsets $S_{i}, i \in\{0,1, \ldots, N\}$. Taking into account that the number of solutions of (24) is $\binom{n+k-i}{n}$, we have $\left|S_{i}\right|=d_{l i}\binom{n+k-i}{n}$.
Theorem 3.3. The numbers of points of the grid F_{M} of Lie algebras $A_{n}, B_{n}, C_{n}, D_{n}$ are given by the following relations.
(i) $A_{n}, n \geqslant 1$,

$$
\left|F_{M}\left(A_{n}\right)\right|=\binom{n+M}{n}
$$

(ii) $C_{n}, n \geqslant 2$,

$$
\begin{aligned}
& \left|F_{2 k}\left(C_{n}\right)\right|=\binom{n+k}{n}+\binom{n+k-1}{n} \\
& \left|F_{2 k+1}\left(C_{n}\right)\right|=2\binom{n+k}{n}
\end{aligned}
$$

(iii) $B_{n}, n \geqslant 3$,

$$
\left|F_{M}\left(B_{n}\right)\right|=\left|F_{M}\left(C_{n}\right)\right|
$$

(iv) $D_{n}, n \geqslant 4$,

$$
\begin{aligned}
& \left|F_{2 k}\left(D_{n}\right)\right|=\binom{n+k}{n}+6\binom{n+k-1}{n}+\binom{n+k-2}{n} \\
& \left|F_{2 k+1}\left(D_{n}\right)\right|=4\binom{n+k}{n}+4\binom{n+k-1}{n}
\end{aligned}
$$

Proof.

(i) Follows directly from proposition 3.1.
(ii) We have $m_{1}=2, m_{2}=2, \ldots, m_{n}=1$ and thus, $L=2$ and Coxeter number $m=2 n, N=1$.
(i) $M=2 k$. According to proposition 3.2 we have to analyze the number of solutions of the equation

$$
l_{0}+l_{n}=2 i, \quad l_{0} \in\{0,1\}, \quad l_{n} \in\{0,1\}
$$

for $i \in\{0,1\}$. This equation has one solution $[0,0]$ for $i=0$ and one solution [1, 1] for $i=1$.
(ii) $M=2 k+1$. The equation

$$
l_{0}+l_{n}=2 i+1, \quad l_{0} \in\{0,1\}, \quad l_{n} \in\{0,1\}
$$

has two solutions [0, 1], [1, 0] for $i=0$ and no solution for $i=1$.
The proof of the cases B_{n}, D_{n} is analogous.
There is a convenient way of writing the expressions for $\left|F_{M}\right|$. For that we introduce, for a given Lie algebra, a matrix

$$
R=\left(d_{l i}\right), \quad l \in\{0, \ldots, L-1\}, \quad i \in\{0, \ldots, N\}
$$

where the numbers $d_{l i}$ and the integers L, N were defined in proposition 3.2. The values of L, N are summarized in table 2 . The matrix R then determines the number of points of F_{M} via the relation

$$
\begin{equation*}
\left|F_{L k+l}\right|=\sum_{i=0}^{N} R_{l i}\binom{n-i+k}{n} \tag{25}
\end{equation*}
$$

The matrices R for all simple Lie algebras are listed in the appendix.
Example 3.1. We demonstrate the application of formula (25) for the case E_{8}. We take the sequence of numbers in the second row of the matrix $R\left(E_{8}\right)$ in the appendix, i.e. the numbers $1,1520913,151753498, \ldots$, and calculate

$$
\begin{aligned}
\left|F_{60 k+1}\left(E_{8}\right)\right|= & \binom{8+k}{8}+1520913\binom{7+k}{8}+151753498\binom{6+k}{8}+1668997388\binom{5+k}{8} \\
& +4262344515\binom{4+k}{8}+3044716089\binom{3+k}{8}+571669092\binom{2+k}{8} \\
& +18981162\binom{1+k}{8}+17342\binom{k}{8} \\
= & \frac{1}{84}(2 k+1)(3 k+1)(5 k+1)(5 k+2)(10 k+3)(15 k+2)(30 k+1)(30 k+7)
\end{aligned}
$$

Table 2. Orders of the finite Weyl groups $|W|$, volumes of F, orders of the center of the compact Lie group, Coxeter numbers m, numbers L, N.

	$A_{n}(n \geqslant 1)$	$B_{n}(n \geqslant 3)$	$C_{n}(n \geqslant 2)$	$D_{n}(n \geqslant 4)$	E_{6}	E_{7}	E_{8}	F_{4}	G_{2}
$\|W\|$	$(n+1)!$	$2^{n} n!$	$2^{n} n!$	$2^{n-1} n!$	$2^{7} 3^{4} 5$	$2^{10} 3^{4} 5 \cdot 7$	$2^{14} 3^{5} 5^{2} 7$	$2^{7} 3^{2}$	12
$\operatorname{vol}(F)$	$\frac{1}{n!\sqrt{n+1}}$	$\frac{1}{n!2^{n-1}}$	$\frac{1}{n!2^{\frac{n}{2}}}$	$\frac{1}{n!2^{n-2}}$	$\frac{\sqrt{3}}{2^{7} 3^{4} 5}$	$\frac{\sqrt{2}}{2^{01} 3^{4} 5 \cdot 7}$	$\frac{1}{2^{14} 3^{55} 5^{2} 7}$	$\frac{1}{2^{63^{2}}}$	$\frac{\sqrt{3}}{12}$
c	$n+1$	2	2	4	3	2	1	1	1
m	$n+1$	$2 n$	$2 n$	$2 n-2$	12	18	30	12	6
L	1	2	2	2	6	12	60	12	6
N	0	1	1	2	5	6	8	4	2

Thus, we have

$$
\begin{aligned}
& \left|F_{1}\left(E_{8}\right)\right|=1 \\
& \left|F_{61}\left(E_{8}\right)\right|=1520922 \\
& \left|F_{121}\left(E_{8}\right)\right|=165441760 \\
& \left|F_{181}\left(E_{8}\right)\right|=3103220120
\end{aligned}
$$

The polynomial $\left|F_{60 k+1}\left(E_{8}\right)\right|$ has real roots, and it could be written in factorized form. The following polynomial can be calculated similarly, but its roots are not real; therefore, we do not factorize it:

$$
\begin{aligned}
\left|F_{60 k+30}\left(E_{8}\right)\right|= & \frac{1}{56}\left(13500000 k^{8}+81000000 k^{7}+211575000 k^{6}+314212500 k^{5}+\right. \\
& \left.+290172925 k^{4}+170628150 k^{3}+62388155 k^{2}+12968910 k+1173536\right)
\end{aligned}
$$

and we obtain a sequence

$$
\begin{aligned}
& \left|F_{30}\left(E_{8}\right)\right|=20956 \\
& \left|F_{90}\left(E_{8}\right)\right|=20671771 \\
& \left|F_{150}\left(E_{8}\right)\right|=780429571 \\
& \left|F_{210}\left(E_{8}\right)\right|=9375443806
\end{aligned}
$$

3.3. Grid F_{M} and elements of finite order in G

The grid F_{M} consists of points representing the elements of Ad -order M and of Ad -order equal to its divisors $[15,16,22$]. The elements of Ad-order M only are found by additional requirement $\operatorname{gcd}\left(s_{0}, s_{1}, \ldots, s_{n}\right)=1$ in (19). Each point then represents particular conjugacy class of elements of Ad-order M. The relation between (full) order k of elements in a conjugacy class of Ad-order M is given $k=M j$, where explicit formulas for j are listed in table 6 in [15].

In $[18,19]$ were calculated explicit formulas for the number $v(k, G)$ of conjugacy classes of elements whose order divide k, in any complex semisimple Lie group G. We have for example in the case of $G=C_{n}, n \geqslant 2$,

$$
v\left(2 k, C_{n}\right)=v\left(2 k+1, C_{n}\right)=\binom{n+k}{n} .
$$

Table 3. Sets $F_{M}\left(C_{2}\right)$ for $M=1,2,3,6$. Each point of $F_{M}\left(C_{2}\right)$ is represented by the coordinates [s_{0}, s_{1}, s_{2}] from (19). The third column contains the full order k of the corresponding conjugacy class of the elements of finite order.

	[$\left.s_{0}, s_{1}, s_{2}\right]$	$\operatorname{gcd}\left(s_{0}, s_{1}, s_{2}\right)$	k
$M=1$	[$1,0,0$]	1	1
	[0, 0, 1]	1	2
$M=2$	[0, 1, 0]	1	2
	[1, 0, 1]	1	4
	[2, 0, 0]	2	-
	[0, 0, 2]	2	-
$M=3$	[1, 1, 0]	1	3
	[1, 0, 2]	1	3
	[2, 0, 1]	1	6
	[0, 1, 1]	1	6
	[3, 0, 0]	3	-
	[0, 0, 3]	3	-
$M=6$	[4, 1, 0]	1	6
	[2, 1, 2]	1	6
	[0, 1, 4]	1	6
	[5, 0, 1]	1	12
	[3, 1, 1]	1	12
	[1, 2, 1]	1	12
	$[1,1,3]$	1	12
	[1, 0, 5]	1	12
	[2, 2, 0]	2	-
	[2, 0, 4]	2	-
	[4, 0, 2]	2	-
	[0, 2, 2]	2	-
	[0, 3, 0]	3	-
	[3, 0, 3]	3	-
	[6, 0, 0]	6	-
	[0, 0, 6]	6	-

Example 3.2. Consider the case C_{2}. We have from [15] that $j=2 / \operatorname{gcd}\left(2, s_{2}\right)$. In table 3 are listed $2,4,6$ and 16 elements of $F_{1}\left(C_{2}\right), F_{2}\left(C_{2}\right), F_{3}\left(C_{2}\right)$ and $F_{6}\left(C_{2}\right)$, respectively. Among these 28 elements there are $v\left(6, C_{2}\right)=\binom{2+3}{2}=10$ elements whose order k divides 6 .

Comparing the explicit formulas for $v(k, G)$ from [19] with our formulas for $\left|F_{M}(G)\right|$, one finds a similarity which suggests some relation between them. In the following proposition, we single out such cases of G for which these formulas coincide. Note also that the following proposition holds for precisely the simple Lie groups with the center of order 1.

Proposition 3.4. If $G=G_{2}, F_{4}$ or E_{8}, then for all $M \in \mathbb{N}$

$$
\left|F_{M}(G)\right|=v(M, G)
$$

Proof. For $K \mid M$ define the set $F_{M, K} \subset F_{M}$ by

$$
\begin{aligned}
& F_{M, K}=\left\{\left.\frac{s_{1}}{M} \omega_{1}^{\vee}+\cdots+\frac{s_{n}}{M} \omega_{n}^{\vee} \right\rvert\, s_{0}, s_{1}, \ldots, s_{n} \in \mathbb{Z}^{\geqslant 0}, s_{0}\right. \\
&\left.+\sum_{i=1}^{n} m_{i} s_{i}=M, \operatorname{gcd}\left(s_{0}, s_{1}, \ldots, s_{n}\right)=K\right\}
\end{aligned}
$$

Since one can write the set F_{M} as a disjoint union of the sets $F_{M, K}$ with $K \mid M$, we have

$$
\begin{equation*}
\left|F_{M}\right|=\sum_{K \mid M}\left|F_{M, K}\right| \tag{26}
\end{equation*}
$$

There is one-to-one correspondence between the set $F_{M, K}$ and the set $F_{\frac{M}{K}, 1}$ via the mapping

$$
F_{\frac{M}{K}, 1} \ni y \mapsto K y \in F_{M, K}
$$

and thus we have

$$
\begin{equation*}
\left|F_{M, K}\right|=\left|F_{\frac{M}{K}, 1}\right| \tag{27}
\end{equation*}
$$

Since for $G=G_{2}, F_{4}$ and E_{8}, we have from [15] that $j=1$, and the number of conjugacy classes of order k is equal to $\left|F_{k, 1}\right|$. Thus, using (26), (27) we obtain

$$
\left|F_{M}(G)\right|=\sum_{K \mid M}\left|F_{M, K}\right|=\sum_{K \mid M}\left|F_{\frac{M}{K}, 1}\right|=\sum_{K \mid M}\left|F_{K, 1}\right|=v(M, G) .
$$

3.4. Interior of F_{M}

Subsequently, we will need to know the order of the stabilizer of a given point in the grid F_{M}. The stabilizer is trivial if the element is found in the interior of F_{M}. Below we consider special functions called S-functions and their discrete pairwise orthogonality. Only the points from the interior of the F_{M} are involved in the orthogonality relations of S-functions. Define an interior of the grid F_{M} as such cosets from $\frac{1}{M} P^{\vee} / Q^{\vee}$ which have representative element in the interior of F :

$$
\widetilde{F}_{M} \equiv \frac{1}{M} P^{\vee} / Q^{\vee} \cap \operatorname{int}(F)
$$

Points from F_{M} which have all coordinates $s_{0}, s_{1}, \ldots, s_{n}$ positive are precisely those from \widetilde{F}_{M}. Thus, from (19) we see that the set \widetilde{F}_{M} can be identified as
$\widetilde{F}_{M}=\left\{\left.\frac{s_{1}^{\prime}}{M} \omega_{1}^{\vee}+\cdots+\frac{s_{n}^{\prime}}{M} \omega_{n}^{\vee} \right\rvert\, s_{0}^{\prime}, s_{1}^{\prime}, \ldots, s_{n}^{\prime} \in \mathbb{N}, s_{0}^{\prime}+s_{1}^{\prime} m_{1}+\cdots+s_{n}^{\prime} m_{n}=M\right\}$.
We calculate the number of elements of \widetilde{F}_{M}.
Proposition 3.5. Let m be the Coxeter number. Then

$$
\left|\widetilde{F}_{M}\right|= \begin{cases}0 & M<m \\ 1 & M=m \\ \left|F_{M-m}\right| & M>m\end{cases}
$$

Proof. Substituting the relations $s_{i}^{\prime}=1+s_{i}, s_{i} \in \mathbb{Z} \geqslant 0, i \in\{0, \ldots, n\}$, into the defining relation (28), we obtain

$$
s_{0}+m_{1} s_{1}+\cdots+m_{n} s_{n}=M-m, \quad s_{0}, \ldots, s_{n} \in \mathbb{Z} \geqslant 0
$$

This equation has one solution $[0, \ldots, 0]$ if $M=m$, no solution if $M<m$ and is equal to the defining relation (19) of F_{M-m} if $M>m$.

Figure 2. The cosets representants of $\frac{1}{4} P^{\vee} / Q^{\vee}$ of C_{2}; the cosets representants are shown as 32 black dots, and the grey area is the fundamental domain F which contains nine points of $F_{4}\left(C_{2}\right)$. The dashed lines represent 'mirrors' r_{0}, r_{1} and r_{2}. Circles are elements of the root lattice Q, and together with squares they are elements of the weight lattice P.

Example 3.3. For the algebra E_{8} we have the Coxeter number $m=30$. We calculated in example 3.1 that $\left|F_{30}\left(E_{8}\right)\right|=20956$. According to proposition 3.5, among these 20956 points, there is only one in the interior of $F_{30}\left(E_{8}\right)$, i.e. $\left|\widetilde{F}_{30}\left(E_{8}\right)\right|=1$.

Example 3.4. For the Lie algebra C_{2} we have Coxeter numbers $m=4$ and $c=2$. Consider for example $M=4$. For the order of the group $\frac{1}{4} P^{\vee} / Q^{\vee}$ we have from (17) that $\left|\frac{1}{4} P^{\vee} / Q^{\vee}\right|=32$ and according to theorem 3.3 we calculate

$$
\left|F_{4}\left(C_{2}\right)\right|=\binom{4}{2}+\binom{3}{2}=9
$$

Note also that from proposition 3.5 it follows that the number of points in the interior $\left|\widetilde{F}_{4}\left(C_{2}\right)\right|=1$. The cosets representants of $\frac{1}{4} P^{\vee} / Q^{\vee}$ and fundamental domain F are depicted in figure 2.

3.5. Grid Λ_{M}

The points of Λ_{M} are the dominant weights specifying C - or S-functions which belong to the same pairwise orthogonal set. Later on we consider C - or S-functions which are sampled on
the points F_{M}. We consider the lowest possible set of such points. The number of points of Λ_{M} coincides with the number of points of F_{M}.

The W-invariant group $P / M Q$ is isomorphic to the group $\frac{1}{M} P^{\vee} / Q^{\vee}$; thus, its order is given by the formula

$$
|P / M Q|=c M^{n}
$$

Define the grid Λ_{M} as such cosets from $P / M Q$ which has some representative element in $M F^{\vee}$:

$$
\Lambda_{M} \equiv M F^{\vee} \cap P / M Q
$$

We have from (13) that the set Λ_{M}, or more precisely its representative points, can be identified as
$\Lambda_{M}=\left\{t_{1} \omega_{1}+\cdots+t_{n} \omega_{n} \mid t_{0}, t_{1}, \ldots, t_{n} \in \mathbb{Z}^{\geqslant 0}, t_{0}+t_{1} m_{1}^{\vee}+\cdots+t_{n} m_{n}^{\vee}=M\right\}$.
Observing table 1 , we see that the n-tuple of dual marks $\left(m_{1}^{\vee}, \ldots, m_{n}^{\vee}\right)$ is a certain permutation of the n-tuple (m_{1}, \ldots, m_{n}). Thus, we have from (19) and (29) that

$$
\begin{equation*}
\left|F_{M}\right|=\left|\Lambda_{M}\right| \tag{30}
\end{equation*}
$$

If we have two elements $b, b^{\prime} \in \mathbb{R}^{n}$ such that $b^{\prime}-b=M q$, with $q \in Q$, then for $w \in W$ we have $w b-w b^{\prime}=w M q \in M Q$, i.e. we have a natural action of W on the quotient group $\mathbb{R}^{n} / M Q$. For $\lambda \in \mathbb{R}^{n} / M Q$ we denote

$$
\operatorname{Stab}^{\vee}(\lambda)=\{w \in W \mid w \lambda=\lambda\}
$$

and

$$
\begin{equation*}
h_{\lambda}^{\vee} \equiv\left|\operatorname{Stab}^{\vee}(\lambda)\right| . \tag{31}
\end{equation*}
$$

Proposition 3.6.

(i) For any $\lambda \in P / M Q$ there exist $\lambda^{\prime} \in \Lambda_{M}$ and $w \in W$ such that

$$
\begin{equation*}
\lambda=w \lambda^{\prime} . \tag{32}
\end{equation*}
$$

(ii) If $\lambda, \lambda^{\prime} \in \Lambda_{M}$ and $\lambda^{\prime}=w \lambda, w \in W$, then

$$
\begin{equation*}
\lambda^{\prime}=\lambda=w \lambda \tag{33}
\end{equation*}
$$

(iii) If $\lambda \in M F^{\vee} \cap \mathbb{R}^{n} / M Q$, i.e. $\lambda=b+M Q, b \in M F^{\vee}$, then

$$
\begin{equation*}
\operatorname{Stab}^{\vee}(\lambda) \cong \operatorname{Stab}_{\widehat{W}}{ }^{\text {aff }}(b / M) \tag{34}
\end{equation*}
$$

Proof.

(i) Let $\lambda \in P / M Q$ be of the form $\lambda=p+M Q, p \in P$. From (14) it follows that there exist $p^{\prime} \in F^{\vee}, w \in W$ and $q \in Q$ such that

$$
\frac{1}{M} p=w p^{\prime}+q
$$

i.e. $p=w M p^{\prime}+M q$. From W-invariance of P we have that $M p^{\prime} \in P$, the class $\lambda^{\prime}=M p^{\prime}+M Q$ is from Λ_{M} and (32) holds.
(ii) Let $\lambda, \lambda^{\prime} \in P / M Q$ be of the form $\lambda=p+M Q, \lambda^{\prime}=p^{\prime}+M Q$ and $p, p^{\prime} \in M F^{\vee}$. Suppose that

$$
p^{\prime}=w p+M q, \quad q \in Q, \quad w \in W
$$

Then $p / M, p^{\prime} / M \in F^{\vee}$ and it follows from (15) that $p=p^{\prime}$.
(iii) We have from (12) that for any $w^{\text {aff }} \in \widehat{W}^{\text {aff }}$ there exist unique $w \in W$ and unique $\operatorname{shift} T(q)$ such that $w^{\text {aff }}=T(q) w$. Define map $\psi: \operatorname{Stab}_{\widehat{W}}$ aff $(b / M) \rightarrow W$ for $w^{\text {aff }} \in \operatorname{Stab}_{\widehat{W}}{ }^{\text {aff }}(b / M)$ by

$$
\psi\left(w^{\mathrm{aff}}\right)=\psi(T(q) w)=w
$$

Since the relation

$$
\psi\left(T\left(q_{1}\right) w_{1} T\left(q_{2}\right) w_{2}\right)=\psi\left(T\left(q_{1}+w_{1} q_{2}\right) w_{1} w_{2}\right)=w_{1} w_{2}
$$

holds, ψ is indeed a homomorphism. If $b / M=w^{\text {aff }}(b / M)=w(b / M)+q$, then $b-w b=M q \in M Q$, i.e. we obtain $w \in \operatorname{Stab}^{\vee}(\lambda)$ and vice versa. Thus, $\psi\left(\operatorname{Stab}_{\widehat{W}}\right.$ aff $\left.(b / M)\right)=\operatorname{Stab}^{\vee}(\lambda)$ holds. We also have

$$
\operatorname{ker} \psi=\left\{T(q) \in \operatorname{Stab}_{\widehat{W}} \text { aff }(b / M)\right\}=1
$$

3.6. Interior of Λ_{M}

The points of the interior of Λ_{M} are the points which label non-zero S-functions. For the points on the boundary of Λ_{M}, the S-functions are equal to zero. Define an interior of the grid Λ_{M} as such cosets from $P / M Q$ which have representative element in the interior of $M F^{\vee}$:

$$
\begin{equation*}
\widetilde{\Lambda}_{M} \equiv P / M Q \cap \underset{\sim}{\operatorname{int}}\left(M F^{\vee}\right) \tag{35}
\end{equation*}
$$

Analogously to (28), the set $\widetilde{\Lambda}_{M}$ can be identified as
$\widetilde{\Lambda}_{M}=\left\{t_{1}^{\prime} \omega_{1}+\cdots+t_{n}^{\prime} \omega_{n} \mid t_{0}^{\prime}, t_{1}^{\prime}, \ldots, t_{n}^{\prime} \in \mathbb{N}, t_{0}^{\prime}+t_{1}^{\prime} m_{1}^{\vee}+\cdots+t_{n}^{\prime} m_{n}^{\vee}=M\right\}$
and moreover

$$
\begin{equation*}
\left|\widetilde{F}_{M}\right|=\left|\widetilde{\Lambda}_{M}\right| \tag{36}
\end{equation*}
$$

Example 3.5. For the Lie algebra C_{2} we have $|P / 4 Q|=32$ and according to (30) we have

$$
\left|\Lambda_{4}\left(C_{2}\right)\right|=\left|F_{4}\left(C_{2}\right)\right|=9
$$

Note also that from (36) it follows that the number of points in the interior $\left|\widetilde{\Lambda}_{4}\left(C_{2}\right)\right|=1$. The cosets representants of $P / 4 Q$, the dual fundamental domain F^{\vee} and the grid $\Lambda_{4}\left(C_{2}\right)=$ $4 F^{\vee} \cap P / 4 Q$ are depicted in figure 3 .

3.7. Calculation of h_{x} and h_{λ}^{\vee}

Calculation procedure of h_{x} for any $x \in F_{M}$ can be deduced from (7) and (11). It uses the extended DD of G. Using the extended DD^{\vee} of G, we obtain from (16) and (34) analogous calculation procedure for $h_{\lambda}^{\vee}, \lambda \in \Lambda_{M}$.

Consider a point $x \in F_{M}$ and its corresponding coordinates $\left[s_{0}, \ldots, s_{n}\right]$ from (19).
(i) If s_{0}, \ldots, s_{n} are all non-zero, then $h_{x}=1$.
(ii) Consider such a subgraph U of extended DD consisting only of those nodes i for which $s_{i}=0, i=0, \ldots, n$. The subgraph U consists in general of several connected components U_{l}. Each component U_{l} is a (non-extended) DD of some simple Lie group G_{l}. Take corresponding orders of the Weyl groups $\left|W_{l}\right|$ of G_{l} from table 2. Then $h_{x}=\prod_{l}\left|W_{l}\right|$.
We proceed similarly to determine h_{λ}^{\vee} when we consider a point $\lambda \in \Lambda_{M}$ and its corresponding coordinates $\left[t_{0}, \ldots, t_{n}\right]$ from (29).
(i) If t_{0}, \ldots, t_{n} are all non-zero, then $h_{\lambda}^{\vee}=1$.
(ii) Consider such a subgraph U^{\prime} of the extended DD^{\vee} consisting only of those nodes i for which $t_{i}=0, i=0, \ldots, n$. The subgraph U^{\prime} consists in general of several connected components U_{l}^{\prime}. Each component U_{l}^{\prime} is a (non-extended) DD of some simple Lie group G_{l}^{\prime}. Take corresponding orders of the Weyl groups $\left|W_{l}^{\prime}\right|$ of G_{l}^{\prime} from table 2. Then $h_{\lambda}^{\vee}=\prod_{l}\left|W_{l}^{\prime}\right|$.

Figure 3. The cosets representants of $P / 4 Q$ of C_{2}; the cosets representants are shown as 32 black dots, the darker grey area is the fundamental domain F^{\vee} and the lighter grey area is the domain $4 F^{\vee}$ which contains nine elements of $\Lambda_{4}\left(C_{2}\right)$. The dashed lines represent dual 'mirrors' $r_{0}^{\vee}, r_{1}, r_{2}$ and the affine mirror $r_{0,4}^{\vee}$ (see (47)). The circles and squares coincide with those in figure 2.

4. W-invariant functions

The numbers $h_{x}, h_{\lambda}^{\vee}$ and $\left|F_{M}\right|$, which were determined so far, are important for the properties of special functions called C - and S-functions when they sampled on F_{M}. A detailed review of the properties of C - and S-functions may be found in [2,3]. In this section we want to complete and make explicit the orthogonality properties of C - and S-functions [17]. Two- and three-dimensional examples of these relations are found in [5-9].

4.1. C-functions

We recall the definition of C-functions and show that they can be labeled by the finite set Λ_{M} when they are sampled on the grid F_{M}.

Consider $b \in P$ and recall that (normalized) C-functions can be defined as a mapping $\Phi_{b}: \mathbb{R}^{n} \rightarrow \mathbb{C}$

$$
\begin{equation*}
\Phi_{b}(a)=\sum_{w \in W} \mathrm{e}^{2 \pi \mathrm{i}\langle w b, a\rangle} \tag{37}
\end{equation*}
$$

The following properties of C-functions are crucial:

- symmetry with respect to $w \in W$

$$
\begin{equation*}
\Phi_{b}(w a)=\Phi_{b}(a) \tag{38}
\end{equation*}
$$

$$
\begin{equation*}
\Phi_{w b}(a)=\Phi_{b}(a), \tag{39}
\end{equation*}
$$

- invariance with respect to $q^{\vee} \in Q^{\vee}$

$$
\begin{equation*}
\Phi_{b}\left(a+q^{\vee}\right)=\Phi_{b}(a) \tag{40}
\end{equation*}
$$

We investigate the values of C-functions on the grid F_{M}. Suppose we have fixed $M \in \mathbb{N}$ and $s \in \frac{1}{M} P^{\vee}$. From (40) it follows that we can consider Φ_{b} as a function on classes $\frac{1}{M} P^{\vee} / Q^{\vee}$. From (9) and (38) it follows that we can consider Φ_{b} only on the set $F_{M} \equiv \frac{1}{M} P^{\vee} / Q^{\vee} \cap F$. We also have

$$
\Phi_{b+M Q}(s)=\Phi_{b}(s), \quad s \in F_{M},
$$

and thus we can consider the functions Φ_{λ} on F_{M} parameterized by classes from $\lambda \in P / M Q$. Moreover, from (32) and (39) it follows that we can consider C-functions Φ_{λ} on F_{M} parameterized by $\lambda \in \Lambda_{M}$ only.

4.2. S-functions

We recall the definition of S-functions and show that they can be labeled by the finite set $\widetilde{\Lambda}_{M}$ when they are sampled on the grid \widetilde{F}_{M}.

Consider $b \in P$ and recall that (normalized) S-functions can be defined as a mapping $\varphi_{b}: \mathbb{R}^{n} \rightarrow \mathbb{C}:$

$$
\begin{equation*}
\varphi_{b}(a)=\sum_{w \in W}(\operatorname{det} w) \mathrm{e}^{2 \pi \mathrm{i}\langle w b, a\rangle} \tag{41}
\end{equation*}
$$

The following properties of S-functions are crucial:

- antisymmetry with respect to $w \in W$

$$
\begin{align*}
& \varphi_{b}(w a)=(\operatorname{det} w) \varphi_{b}(a) \tag{42}\\
& \varphi_{w b}(a)=(\operatorname{det} w) \varphi_{b}(a), \tag{43}
\end{align*}
$$

- invariance with respect to $q^{\vee} \in Q^{\vee}$

$$
\begin{equation*}
\varphi_{b}\left(a+q^{\vee}\right)=\varphi_{b}(a) . \tag{44}
\end{equation*}
$$

Moreover, simple calculation shows that $\varphi_{b}\left(r_{0} a\right)=-\varphi_{b}(a)$ and thus we have

$$
\begin{equation*}
\varphi_{b}\left(r_{i} a\right)=-\varphi_{b}(a), \quad i \in\{0, \ldots, n\} . \tag{45}
\end{equation*}
$$

We investigate the behavior of S-functions on the grid F_{M}. Suppose we have fixed $M \in \mathbb{N}$ and $s \in \frac{1}{M} P^{\vee}$. From (44) it follows that we can consider φ_{b} as a function on classes $\frac{1}{M} P^{\vee} / Q^{\vee}$. From (9) and (42) it follows that we can consider φ_{b} only on the set $F_{M} \equiv \frac{1}{M} P^{\vee} / Q^{\vee} \cap F$. Moreover, from (45) we see that φ_{b} vanishes on the boundary of the fundamental domain F and thus we can consider φ_{b} only on the interior \widetilde{F}_{M}.

We also have

$$
\varphi_{b+M Q}(s)=\varphi_{b}(s), \quad s \in \widetilde{F}_{M}
$$

and thus we can consider the functions φ_{λ} on \widetilde{F}_{M} parameterized by classes from $\lambda \in P / M Q$. Moreover, from (32) and (43) it follows that we can consider φ_{λ} on \widetilde{F}_{M} parameterized by classes from Λ_{M}. From (43) we have that

$$
\begin{equation*}
\varphi_{r_{i}^{\vee} \lambda}(s)=-\varphi_{\lambda}(s), \quad s \in \widetilde{F}_{M}, \quad i \in\{1, \ldots, n\} . \tag{46}
\end{equation*}
$$

For the affine reflection $r_{0, M}^{\vee}$, given by

$$
\begin{equation*}
r_{0, M}^{\vee} \lambda=r_{\eta} \lambda+M \frac{2 \eta}{\langle\eta, \eta\rangle} \tag{47}
\end{equation*}
$$

we also obtain

$$
\begin{equation*}
\varphi_{r_{0, M}^{\vee}}(s)=-\varphi_{\lambda}(s), \quad s \in \widetilde{F}_{M} \tag{48}
\end{equation*}
$$

We conclude that for $\lambda \in \Lambda_{M} \backslash \widetilde{\Lambda}_{M}$

$$
\varphi_{\lambda}(s)=0, \quad s \in \widetilde{F}_{M}
$$

Thus, we can consider S-functions φ_{λ} on \widetilde{F}_{M} parameterized by $\lambda \in \widetilde{\Lambda}_{M}$ only.

5. Discrete orthogonality of \boldsymbol{C} - and S-functions

5.1. Basic discrete orthogonality relations

Discrete orthogonality of the C - and S-functions was discussed in general in [17]. Practical use of [17] is not completely straightforward. Therefore we reformulate the basic facts and we subsequently use them to make the discrete orthogonality over F_{M} described in all details.

Note that since for $a \in \frac{1}{M} P^{\vee}$ and $b \in P$ the relation

$$
\mathrm{e}^{2 \pi \mathrm{i}\left\langle b+M Q, a+Q^{\vee}\right\rangle}=\mathrm{e}^{2 \pi \mathrm{i}\langle b, a\rangle}
$$

holds, the exponential mapping $\mathrm{e}^{2 \pi i\langle\lambda, x\rangle} \in \mathbb{C}$ for $\lambda \in P / M Q$ and $x \in \frac{1}{M} P^{\vee} / Q^{\vee}$ is well defined.

Proposition 5.1. For all $\lambda \in P / M Q, \lambda \neq 0$, there exists $x \in \frac{1}{M} P^{\vee} / Q^{\vee}$ such that $\mathrm{e}^{2 \pi \mathrm{i}\langle\lambda, x\rangle} \neq 1$.
Proof. Suppose there is some $p \in P$ and $p \notin M Q$ such that for all $p^{\vee} \in P^{\vee}$

$$
\begin{equation*}
\left\langle p, \frac{p^{\vee}}{M}\right\rangle=\left\langle\frac{p}{M}, p^{\vee}\right\rangle \in \mathbb{Z} \tag{49}
\end{equation*}
$$

Then from (2) we have $p / M \in Q$, i.e. $p \in M Q$-a contradiction.
Corollary 5.2. For any $\lambda, \lambda^{\prime} \in P / M Q$ it holds that

$$
\begin{equation*}
\sum_{y \in \frac{1}{M} P^{\vee} / Q^{\vee}} \mathrm{e}^{2 \pi \mathrm{i}\left(\lambda-\lambda^{\prime}, y\right\rangle}=c M^{n} \delta_{\lambda, \lambda^{\prime}} \tag{50}
\end{equation*}
$$

5.2. Discrete orthogonality of C-functions

We define the scalar product of two functions $f, g: F_{M} \rightarrow \mathbb{C}$ by

$$
\begin{equation*}
\langle f, g\rangle_{F_{M}}=\sum_{x \in F_{M}} \varepsilon(x) f(x) \overline{g(x)}, \tag{51}
\end{equation*}
$$

where the numbers $\varepsilon(x)$ are determined by (8). We show that Λ_{M}, defined by (29), is the lowest maximal set of pairwise orthogonal C-functions.

Proposition 5.3. For $\lambda, \lambda^{\prime} \in \Lambda_{M}$ it holds that

$$
\begin{equation*}
\left\langle\Phi_{\lambda}, \Phi_{\lambda^{\prime}}\right\rangle_{F_{M}}=c|W| M^{n} h_{\lambda}^{\vee} \delta_{\lambda, \lambda^{\prime}}, \tag{52}
\end{equation*}
$$

where c, h_{λ}^{\vee}, Φ_{λ} were defined by (1), (31), (37) respectively, and n is the rank of G.

Proof. The equality

$$
\sum_{x \in F_{M}} \varepsilon(x) \Phi_{\lambda}(x) \overline{\Phi_{\lambda^{\prime}}(x)}=\sum_{y \in \frac{1}{M} P^{\vee} / Q^{\vee}} \Phi_{\lambda}(y) \overline{\Phi_{\lambda^{\prime}}(y)}
$$

follows from (10) and (18) and W-invariance of the expression $\Phi_{\lambda}(x) \overline{\Phi_{\lambda^{\prime}}(x)}$. Then, using W-invariance of $\frac{1}{M} P^{\vee} / Q^{\vee}$, we have

$$
\begin{aligned}
\left\langle\Phi_{\lambda}, \Phi_{\lambda^{\prime}}\right\rangle_{F_{M}} & =\sum_{w^{\prime} \in W} \sum_{w \in W} \sum_{y \in \frac{1}{M} P^{\vee} / Q^{\vee}} \mathrm{e}^{2 \pi \mathrm{i}\left\langle w \lambda-w^{\prime} \lambda^{\prime}, y\right\rangle}=|W| \sum_{w^{\prime} \in W} \sum_{y \in \frac{1}{M} P^{\vee} / Q^{\vee}} \mathrm{e}^{2 \pi \mathrm{i}\left\langle\lambda-w^{\prime} \lambda^{\prime}, y\right\rangle} \\
& =c|W| M^{n} \sum_{w^{\prime} \in W} \delta_{w^{\prime} \lambda^{\prime}, \lambda}
\end{aligned}
$$

Since $\lambda, \lambda^{\prime} \in \Lambda_{M}$, we have from (33) that

$$
\sum_{w^{\prime} \in W} \delta_{w^{\prime} \lambda^{\prime}, \lambda}=h_{\lambda}^{\vee} \delta_{\lambda, \lambda^{\prime}}
$$

5.3. Discrete orthogonality of S-functions

Unlike the C-functions, the S-functions have non-zero values on the interior \widetilde{F}_{M} only. Note that from (7) and (11) we have that $\varepsilon(x)=|W|, x \in \widetilde{F}_{M}$. Therefore, we define the scalar product of two functions $f, g: \widetilde{F}_{M} \rightarrow \mathbb{C}$ as follows:

$$
\begin{equation*}
\langle f, g\rangle_{\tilde{F}_{M}}=|W| \sum_{x \in \widetilde{F}_{M}} f(x) \overline{g(x)} . \tag{53}
\end{equation*}
$$

Then since φ_{λ} vanishes on the boundary of F_{M}, we have

$$
\left\langle\varphi_{\lambda}, \varphi_{\lambda^{\prime}}\right\rangle_{F_{M}}=|W| \sum_{x \in \widetilde{F}_{M}} \varphi_{\lambda}(x) \overline{\varphi_{\lambda^{\prime}}(x)}=\left\langle\varphi_{\lambda}, \varphi_{\lambda^{\prime}}\right\rangle_{\widetilde{F}_{M}} .
$$

We show that $\tilde{\Lambda}_{M}$, determined by (35), is the lowest maximal set of pairwise orthogonal S-functions.
Proposition 5.4. For $\lambda, \lambda^{\prime} \in \widetilde{\Lambda}_{M}$ it holds that

$$
\begin{equation*}
\left\langle\varphi_{\lambda}, \varphi_{\lambda^{\prime}}\right\rangle \widetilde{F}_{M}=c|W| M^{n} \delta_{\lambda, \lambda^{\prime}} \tag{54}
\end{equation*}
$$

where c, φ_{λ} were defined by (1), (41) respectively, and n is the rank of G.
Proof. The equality

$$
\sum_{x \in F_{M}} \varepsilon(x) \varphi_{\lambda}(x) \overline{\varphi_{\lambda^{\prime}}(x)}=\sum_{y \in \frac{1}{M} P^{\vee} / Q^{\vee}} \varphi_{\lambda}(y) \overline{\varphi_{\lambda^{\prime}}(y)}
$$

follows from (10) and (18) and W-invariance of the expression $\varphi_{\lambda}(x) \overline{\varphi_{\lambda^{\prime}}(x)}$. Then, using W-invariance of $\frac{1}{M} P^{\vee} / Q^{\vee}$, we have

$$
\begin{aligned}
\left\langle\varphi_{\lambda}, \varphi_{\lambda^{\prime}}\right\rangle_{F_{M}} & =\sum_{w^{\prime} \in W} \sum_{w \in W} \sum_{y \in \frac{1}{M} P^{\vee} / Q^{\vee}}\left(\operatorname{det} w w^{\prime}\right) \mathrm{e}^{2 \pi \mathrm{i}\left(w \lambda-w^{\prime} \lambda^{\prime}, y\right\rangle} \\
& =|W| \sum_{w^{\prime} \in W} \sum_{y \in \frac{1}{M} P^{\vee} / Q^{\vee}}\left(\operatorname{det} w^{\prime}\right) \mathrm{e}^{2 \pi \mathrm{i}\left\langle\lambda-w^{\prime} \lambda^{\prime}, y\right\rangle} \\
& =c|W| M^{n} \sum_{w^{\prime} \in W}\left(\operatorname{det} w^{\prime}\right) \delta_{w^{\prime} \lambda^{\prime}, \lambda} .
\end{aligned}
$$

If $\lambda=w^{\prime} \lambda^{\prime}$, then we have from (33) that $w^{\prime} \lambda=\lambda=\lambda^{\prime}$. Since $\lambda \in \widetilde{\Lambda}_{M}$, it follows from (16) and (34) that $w^{\prime}=1$.

5.4. Discrete C - and S-transforms

Analogously to ordinary Fourier analysis, we define interpolating functions Φ^{M}, φ^{M}

$$
\begin{align*}
\Phi^{M}(x):=\sum_{\lambda \in \Lambda_{M}} c_{\lambda} \Phi_{\lambda}(x), & x \in \mathbb{R}^{n} \tag{55}\\
\varphi^{M}(x):=\sum_{\lambda \in \tilde{\Lambda}_{M}} \widetilde{c}_{\lambda} \varphi_{\lambda}(x), & x \in \mathbb{R}^{n} \tag{56}
\end{align*}
$$

which are given in terms of expansion functions $\Phi_{\lambda}, \varphi_{\lambda}$ and expansion coefficients c_{λ}, whose values need to be determined. These interpolating functions can also be understood as finite cut-offs of infinite expansions. The interpolation properties of (55), (56) were tested in dimensions 2 [5-8] and 3 [9]. In this paper we develop the possibility for solving the interpolation problem for general class of functions sampled on F_{M}.

Next we discretize equations (55), (56). Suppose we have some function f sampled on the grid F_{M} or \widetilde{F}_{M}. The interpolation of f consists in finding the coefficients c_{λ} (or \widetilde{c}_{λ}) in the interpolating functions (55) or (56) such that

$$
\begin{array}{ll}
\Phi^{M}(x)=f(x), & x \in F_{M} \\
\varphi^{M}(x)=f(x), & x \in \widetilde{F}_{M} \tag{58}
\end{array}
$$

Relations (30), (36) and (52), (54) allow us to view the values $\Phi_{\lambda}(x)$ with $x \in F_{M}, \lambda \in \Lambda_{M}$ and the values of $\varphi_{\lambda}(x)$ with $x \in \widetilde{F}_{M}, \lambda \in \widetilde{\Lambda}_{M}$ as elements of non-singular square matrices. These invertible matrices coincide with the matrices of the linear systems (57), (58). Thus, the coefficients $c_{\lambda}, \widetilde{c}_{\lambda}$ can be in both cases uniquely determined. The formulas for calculation of c_{λ} and \widetilde{c}_{λ}, which are also called discrete C - and S-transforms, can be obtained by means of calculation of standard Fourier coefficients:

$$
\begin{align*}
& c_{\lambda}=\frac{\left\langle f, \Phi_{\lambda}\right\rangle_{F_{M}}}{\left\langle\Phi_{\lambda}, \Phi_{\lambda}\right\rangle_{F_{M}}}=\left(c|W| M^{n} h_{\lambda}^{\vee}\right)^{-1} \sum_{x \in F_{M}} \varepsilon(x) f(x) \overline{\Phi_{\lambda}(x)} \tag{59}\\
& \widetilde{c}_{\lambda}=\frac{\left\langle f, \varphi_{\lambda}\right\rangle_{\widetilde{F}_{M}}}{\left\langle\varphi_{\lambda}, \varphi_{\lambda}\right\rangle \widetilde{F}_{M}}=\left(c M^{n}\right)^{-1} \sum_{x \in \widetilde{F}_{M}} f(x) \overline{\varphi_{\lambda}(x)} \tag{60}
\end{align*}
$$

6. Concluding remarks

- In situations when a large number of data (functions), sampled on the same grid F_{M}, have to be developed into finite series, the processing load can be significantly lightened, which may not be evident from the exposition above. The problem can be viewed in the following matrix form:

$$
b=D f, \quad f \in \mathbb{C}^{\left|\Lambda_{M}\right| \times 1}, \quad b \in \mathbb{C}^{\left|F_{M}\right|} \quad D \in \mathbb{C}^{\left|\Lambda_{M}\right| \times\left|F_{M}\right|}
$$

Here f is a matrix column containing the values of the function sampled on the points of F_{M}, which is being decomposed into the finite series of $\left|\Lambda_{M}\right|$ terms. D is the decomposition matrix and b is the matrix column formed by the coefficient of the finite series. Crucial observation here is that D depends on the values of the C - or S-functions on the points of F_{M}, but not on the function that is being decomposed. Therefore, the matrix D needs to be computed only once and then stored as a look-up table for subsequent computations. Moreover, it was shown in [16] that, with some additional constraints, the decomposition matrix can be made to contain only integer matrix elements.

- Products of C - and S-functions, referring to the same Lie group and the same point $x \in F$, are fully decomposable into the sum of such functions. More precisely,

$$
\begin{array}{ll}
C_{\lambda}(x) C_{\lambda^{\prime}}(x)=\sum_{k} d_{k} C_{k}(x), & d_{k} \in \mathbb{N}, \\
C_{\lambda}(x) S_{\lambda^{\prime}}(x)=\sum_{k} d_{k} S_{k}(x), & d_{k} \in \mathbb{Z}, \\
S_{\lambda}(x) S_{\lambda^{\prime}}(x)=\sum_{k} d_{k} C_{k}(x), & d_{k} \in \mathbb{Z} . \tag{63}
\end{array}
$$

The problem here parallels the decomposition of Weyl group orbits which was extensively studied in [23].

- Reduction of a semisimple Lie group G to its reductive subgroup, say G^{\prime}, implies decomposition of orbit functions of G into the sum of orbit functions of G^{\prime}, so called computation of branching rules. It involves simultaneous transformation of λ and x to the corresponding quantities of the subgroup.
- Another undoubtedly useful property of the orbit functions, which played no role in this paper, is the fact that they are eigenfunctions of the Laplace operator appropriate for the Lie group and that the eigenvalues are known in all cases.
- There is another type of special function similar to C - and S-functions, the so-called E-functions [1, 9]. Their discretization properties, fundamental domains, orbit sizes and discrete orthogonality relations will be treated in a separated article.
- The present work raises the question under which conditions converge series of the functions $\left\{\Phi^{M}\right\}_{M=1}^{\infty},\left\{\varphi^{M}\right\}_{M=1}^{\infty}$ assigned to a function $f: F \rightarrow \mathbb{C}$ by relations (55), (59) and (56), (60).
- The orbit functions are directly related to the symmetric polynomials [24-28], see also section 11 in [2]. A detailed description of these relations as well as their discretization properties deserves further study.

Acknowledgments

The authors are grateful to R V Moody for fruitful discussions and comments. Work was supported in part by the Natural Sciences and Engineering Research Council of Canada and by the MIND Research Institute, California. JH is grateful for the postdoctoral fellowship and the hospitality extended to him at the Centre de recherches mathématiques, Université de Montréal.

Appendix

We list the explicit form of the matrices R for all simple Lie algebras. These matrices determine the number $\left|F_{M}\right|$ via relation (25):
$A_{n}, n \geqslant 1$,

$$
R\left(A_{n}\right)=(1)
$$

$B_{n}, n \geqslant 3$,

$$
R\left(B_{n}\right)=\left(\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right)
$$

$C_{n}, n \geqslant 2$,

$$
R\left(C_{n}\right)=\left(\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right)
$$

$D_{n}, n \geqslant 4$,

$$
R\left(D_{n}\right)=\left(\begin{array}{lll}
1 & 6 & 1 \\
4 & 4 & 0
\end{array}\right)
$$

$$
R\left(F_{4}\right)=\left(\begin{array}{ccccc}
1 & 84 & 262 & 84 & 1 \\
1 & 100 & 265 & 66 & 0 \\
3 & 121 & 253 & 55 & 0 \\
4 & 139 & 250 & 39 & 0 \\
8 & 160 & 232 & 32 & 0 \\
10 & 181 & 220 & 21 & 0 \\
17 & 199 & 199 & 17 & 0 \\
21 & 220 & 181 & 10 & 0 \\
32 & 232 & 160 & 8 & 0 \\
39 & 250 & 139 & 4 & 0 \\
55 & 253 & 121 & 3 & 0 \\
66 & 265 & 100 & 1 & 0
\end{array}\right) \quad R\left(G_{2}\right)=\left(\begin{array}{ccc}
1 & 4 & 1 \\
1 & 5 & 0 \\
2 & 4 & 0 \\
3 & 3 & 0 \\
4 & 2 & 0 \\
5 & 1 & 0
\end{array}\right)
$$

$$
R\left(E_{6}\right)=\left(\begin{array}{cccccc}
1 & 132 & 839 & 839 & 132 & 1 \\
3 & 210 & 945 & 708 & 78 & 0 \\
9 & 309 & 1017 & 567 & 42 & 0 \\
20 & 433 & 1038 & 433 & 20 & 0 \\
42 & 567 & 1017 & 309 & 9 & 0 \\
78 & 708 & 945 & 210 & 3 & 0
\end{array}\right)
$$

$$
R\left(E_{7}\right)=\left(\begin{array}{ccccccc}
1 & 1011 & 19029 & 58150 & 40371 & 5775 & 79 \\
2 & 1414 & 22208 & 59612 & 36626 & 4510 & 44 \\
6 & 1944 & 25585 & 60536 & 32856 & 3464 & 25 \\
12 & 2616 & 29172 & 60816 & 29172 & 2616 & 12 \\
25 & 3464 & 32856 & 60536 & 25585 & 1944 & 6 \\
44 & 4510 & 36626 & 59612 & 22208 & 1414 & 2 \\
79 & 5775 & 40371 & 58150 & 19029 & 1011 & 1 \\
128 & 7296 & 44032 & 56128 & 16128 & 704 & 0 \\
208 & 9071 & 47520 & 53654 & 13480 & 483 & 0 \\
318 & 11142 & 50748 & 50748 & 11142 & 318 & 0 \\
483 & 13480 & 53654 & 47520 & 9071 & 208 & 0 \\
704 & 16128 & 56128 & 44032 & 7296 & 128 & 0
\end{array}\right)
$$

References

[1] Patera J 2005 Compact simple Lie groups and theirs C-, S-, and E-transforms SIGMA 1025 (arXiv:math-ph/0512029)
[2] Klimyk A U and Patera J 2006 Orbit functions SIGMA 2006 (arXiv:math-ph/0601037)
[3] Klimyk A U and Patera J 2007 Antisymmetric orbit functions SIGMA 3023 (arXiv:math-ph/0702040v1)
[4] Klimyk A U and Patera J 2008 E-orbit functions SIGMA 4002 (arXiv:0801.0822)
[5] Patera J and Zaratsyan A 2005 Discrete and continuous cosine transform generalized to the Lie groups $S U(2) \times S U(2)$ and $O(5)$ J. Math. Phys. 46053514
[6] Patera J and Zaratsyan A 2005 Discrete and continuous cosine transform generalized to Lie groups $S U(3)$ and G(2) J. Math. Phys. 46113506
7] Patera J and Zaratsyan A 2006 Discrete and continuous sine transform generalized to the semisimple Lie groups of rank two J. Math. Phys. 47043512
[8] Atoyan A and Patera J 2007 The discrete $S U(3)$ transform and its continuous extension for triangular lattices J. Geom. Phys. 57 745-64
[9] Nesterenko M and Patera J 2008 Three dimensional C-, S-, and E-transforms J. Phys. A: Math. Theor. 41475205 (arXiv:0805.3731v1)
[10] Bourbaki N 1968 Groupes et algèbres de Lie (Paris: Hermann) chapiters IV, V, VI
[11] Humphreys J E 1972 Introduction to Lie Algebras and Representation Theory (New York: Springer)
[12] Vinberg E B and Onishchik A L 1994 Lie Groups And Lie Algebras (New York: Springer)
[13] Humphreys J E 1990 Reflection Groups and Coxeter Groups (Cambridge Studies in Advanced Mathematics vol 29) (Cambridge: Cambridge University Press)
[14] Bjorner A and Brenti F 2005 Combinatorics of Coxeter Groups (Graduate Texts in Mathematics vol 231) (New York: Springer)
[15] Moody R V and Patera J 1984 Characters of elements of finite order in simple Lie groups SIAM J. Algebraic Discrete Methods 5 359-83
[16] Moody R V and Patera J 1987 Computation of character decompositions of class functions on compact semisimple Lie groups Math. Comput. 48 799-827
[17] Moody R V and Patera J 2006 Orthogonality within the families of C-, S-, and E-functions of any compact semisimple Lie group SIGMA 2076 (arXiv:math-ph/0611020)
[18] Djoković D 1980 On conjugacy classes of elements of finite order in compact or complex semisimple Lie groups Proc. Am. Math. Soc. 80 181-4
[19] Djoković D 1985 On conjugacy classes of elements of finite order in complex semisimple Lie groups J. Pure Appl. Algebra 35 1-13
[20] Destrempes F and Pianzola A 1994 On a counting formula of Djoković for elements of finite order in compact Lie groups Proc. Am. Math. Soc. 121 943-50
[21] Moody R V and Patera J 1992 Voronoi and Delaunay cells of root lattices: classification of their faces and facets by Coxeter-Dynkin diagrams (dedicated to the memory of H Zassenhaus) J. Phys. A: Math. Gen. 25 5089-134
[22] Kac V 1969 Automorphisms of finite order of semi-simple Lie algebras Funct. Anal. Appl. 3 252-4
[23] Háková L, Larouche M and Patera J 2008 The rings of n-dimensional polytopes J. Phys. A: Math. Theor. 41495202 (arXiv:0901.4686)
[24] Koornwinder T H 1974 Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators I-II Kon. Ned. Akad. Wet. Ser. A 77 46-66
[25] Koornwinder T H 1974 Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators III-IV Indag. Math. 36 357-81
[26] Macdonald I G 1998 Symmetric Functions and Orthogonal Polynomials: Dean Jacqueline B Lewis Memorial Lectures presented at Rutgers University (University Lecture Series vol 12) (Providence, RI: American Mathematical Society)
[27] Dunkl C F and Xu Y 2001 Orthogonal polynomials of several variables Encyclopedia of Mathematics and Its Applications vol 81 (Cambridge: Cambridge University Press)
[28] Nesterenko M, Patera J and Tereszkiewicz A 2009 Orbit functions of $S U(n)$ and Chebyshev polynomials V (arXiv:0905.2925v1)

